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17 Stars notes 2019/10/9 - Wed - Nuclear cross sec-

tions, S-factor

17.1 Tunneling factor

last time with rc is defined Z1Z2e
2/rc = E the tunneling integral is
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we will end up taking rn → 0 which is a good approximation for this integral. This integral
ends up
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where α is the fine structure constant. The probability we want is

P (0)/P (∞) = exp
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Called the Gamov tunnelling factor. There is an energy scale that we can write as the
Gamov energy

EG = (παZ1Z2)
2(2mrc

2)

so that
P (0) ∝ exp

(
−(EG/E)1/2

)
Looking at some numbers: for p+p we have EG = 494 keV and for p+12C have EG = 33

MeV. This gives for p+ p,

P (0) = exp

(
−
(
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1

)1/2
)

= 2× 10−10

this is how likely you are to see the nuclear force, but even if you do because we want a
weak interaction it is suppresed by another large factor (10−25).

for E = 1
2
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2 ( v = relative velocity) can rewrite
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)
There is in some sense a maximum coulomb energy
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then

P (0) scales like exp

(
−Ecoul(λ)

1
2
mrv2

)
Now want to convolute this probability with the thermal distribution to see what energy

particles are important.
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17.2 Nuclear cross-sections

We’ve only calculated the overlap. There’s reason to expect a resonance which helps the
cross section. For now consider non-resonant reactions. The only length scale in the
problem is

λ =
h

p
' 10−10cm at keV

this is much greater than Rnuc = 1.3 fm A1/3. The reaction physics depends only on the
COM energy

ECOM =
1

2
mr|~v1 − ~v2|2

For s-wave interactions (no angular momentum in COM) the cross section, which is what
one measures with an accelerator, looks like

σ(E) = (4πλ2)(dimensionless stuff) exp(−(EG/E)1/2)

the way this is defined (consistent with textbook)

4πλ2 = 4π
1

k2
=

2π~2

mrEc

= 2000 barns

(
keV

Ecom

)
where 1 barn = 10−24 cm2 and Ecom = ~2k2/2m.

Then the conventional way to write the cross section is

σ(E) =
1

E
S(E)e−(EG/E)1/2

Where S(E) is called the “S-factor”, and is what is usually obtained in the lab and extrap-
olated (more on this next time). If the dimensionless stuff was = 1 then

S(E) = 2000 barns keV

This is a VERY large cross section, rarely are they this big. Now the experimentalists
must measure the dimensionless stuff for the reaction we want, that is get S(E). To do
this experimentalists must measure σ(E) and then extrapolate to low energies.

The cross section σ(E) is what is appropriate for an experiment. i.e. a beam of well-
determined energy pointed at a target. By contrast, stars will have a broad thermal energy
distribution.

An example of a measured cross-section for p+12C from Clayton chapter 4:
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Another example from 12C+16O, which is very important for thermonuclear supernovae
(Martinez-Rodriguez et al. 2017ApJ...843...35M) is the following cross section from Jiang
et al. (2007).
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And from pre-release data:

We need to figure out what energy range is important for stars.

17.3 (thermal) Nuclear reactions for star

Need to go from cross section σ(E), which depends on incoming particle energy, to rate
ε(T ), which depends on gas temperature.

Now we want to go about convolving with the thermal distribution of the protons.
Usually we write down time between collisions

t ' 1

σnv
or a rate r = σnv

We have σ(E), dependent on energy of incoming particle, but we really want the thermal
average

〈σv〉 =

∫ ∞
0

vrσ(vr)P (vr)dvr

where P (vr)dvr = probability that two particles have a relative velocity between vr and
vr + dvr.

The energy generation rate will then be

εnuc =
n1n2 〈σv〉Enuc

ρ

where Enuc is the energy released per reaction.
For an ideal gas obeying maxwell-Boltzmann:
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now just need to put this in and do the integral. The integral becomes
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Will put in σ(E) and discuss this integral next time. This will tell us the energy of typical
reacting particles.
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