16 Stars notes 2019/10/7 - Mon - Hydrogen fusion

16.1 Transition to nuclear fusion

What do we know?

- 1. hydrostatic balance and ideal gas $kT \simeq GMm_p/R$
- 2. Luminosity set by the rate of heat transport.
- 3. Stars can live on gravitational contraction for about

$$t_{KH} \sim \frac{GM^2/R}{L} \simeq 10^7 years$$

The *Radius* of main sequence stars will be fixed by condition that

$$L = \int \epsilon_{nuc} dm$$

The big bang makes by mass 75% H and about 25% He, and some ⁷Li, ³He, D.

We want to take advantage of the ~ 7 MeV binding energy/nucleon to power the sun and other stars for \sim Gyrs.

16.1.1 The pp chain

Starting from pure Hydrogen. First we need some neutrons

$$p + p \rightarrow d + e^+ + \nu_e$$

this is the first step, also the slowest step since it is a weak interaction.

$$p+d \rightarrow^3 He + \gamma$$

usually closed by

$${}^{3}He + {}^{3}He \rightarrow {}^{4}He + 2p$$

This is called the pp cycle. The last two steps are strong interactions and so are fast. The last has a large coulomb barrier.

16.2 Coulomb Tunneling in nuclear reactions

The nuclear force is short ranged distances \simeq fm so we need to find the overlap of the wavefunction of two charged particles on this length scale.

There is about a 1 MeV coulomb energy barrier to getting into the nucleus, wheras the energy of the protons is more like 1 keV.

What is the de Broglie λ of the protons?

$$E_{th} = 1 keV \Rightarrow \lambda_{prot} = \frac{h}{p} = 10^{-10} \text{ cm}$$

Even the QM "size" of the proton is $\gg r_{nuc} \simeq 10^{-13}$ cm. Coulomb tunneling for scattering states \Rightarrow Two incident plane waves and ask what is the overlap probability at r = 0.

We'll do just the one dimensional problem in WKB in a moment.

Start with simpler: square barrier Demonstrate concept of tunneling

For tunneling through a square barrier of height V we solve schrodinger's equation:

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right]\psi(x) = E\psi(x)$$

the mass here in the actual problem will be the reduced mass

$$m = m_r = \frac{m_1 m_2}{m_1 + m_2}$$

Away from the barrier the wave function looks like $\psi(x) = e^{ikx}$, so that

$$\frac{\hbar^2 k^2}{2m} = E$$

that relates E and the wavenumber of the particle $k = 2\pi/\lambda$

Inside the barrier we have

$$\frac{-\hbar^2}{2m_r}\frac{d}{dx^2}\psi = (E-V)\psi$$

with V > E so that the solution is $\psi \sim e^{\pm kx}$. Then the probability for penetration of the barrier comes from the square of the wave function on the left of the barrier:

$$|\psi(0)|^2 = [e^{-k_{in}\Delta x}]^2 |\psi_{\infty}|^2$$

is the probability at the orgin for a particle coming through a barrier from infinity.

Now with actual potential and WKB approximation For our case, in the WKB approximation, where it is assumed $1/k \ll \text{length scale of variations in } V(r)$, assume $\psi(r) \propto e^{kx}$, but now k(r) can vary in space. By only keeping first-order terms, the Schrödinger equation is then

$$-\frac{\hbar^2 [k(r)]^2}{2m_r} = -\frac{Z_1 Z_2 e^2}{r} + E$$

i.e. instead of solving the "real" ODE, we just assume the wave function is everywhere like a plane wave (e^{ikx}) and solve for k(r). Like in barrier problem we want

$$P \sim |e^{-k_{in}\Delta z}|^2 \Rightarrow \text{ in WKB this becomes } \Rightarrow \exp\left(-2\int k(r)dr\right)$$

The wave number is

$$k(r) = \left(\frac{2m_r}{\hbar^2}\right)^{1/2} \left[\frac{Z_1 Z_2 e^2}{r} - E\right]^{1/2} = \left(\frac{2m_r E}{\hbar^2}\right)^{1/2} \left[\frac{r_c}{r} - 1\right]^{1/2}$$

where r_c is defined $Z_1 Z_2 e^2 / r_c = E$ then the integral is

$$I = \int k dr = \left(\frac{2m_r E}{\hbar^2}\right)^{1/2} \int_{r_n}^{r_c} \left[\frac{r_c}{r} - 1\right]^{1/2} dr = \left(\frac{2m_r E}{\hbar^2}\right)^{1/2} r_c \int_{r_n/r_c}^{1} \left[\frac{1}{x} - 1\right]^{1/2} dx$$

we will end up taking $r_n \to 0$ which is a good approximation for this integral. This integral ends up

$$I = \frac{\pi}{2} \alpha Z_1 Z_2 \left(\frac{2m_r c^2}{E}\right)^{1/2}$$

where α is the fine structure constant. The probability we want is

$$P(0) \propto \exp\left(-\pi \alpha Z_1 Z_2 \left(\frac{2m_r c^2}{E}\right)^{1/2}\right)$$

Called the Gamov tunnelling factor.