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12 Stars notes 2019/09/25 - Wed - convection

We will start stellar evolution with protostars - which as we have seen in MESA are fully
convective. So we need to understand convection first!

12.1 Condition for Convection

So we found that, for stability
d ln ρbub
dr

>
d ln ρ

dr

or, using the relation we found for a bubble rising adiabatically in pressure equilibrium,

d ln ρbub
dr

=
1

γ

d lnP

dr

where γ = 5/3 for monatomic ideal gas, this becomes

1

γ

d lnP

dr
>
d ln ρ

dr

It is most conventient to have a relation between T and P . To do this, we have to
presume some equation of state. If we presume an ideal gas, then P = ρkT/µmp, or
equivalently ρ = µmpP/kT . Now eliminate ρ in favor of T and P using this EOS to relate
derivatives:

d ln ρ = d lnP − d lnT + d lnµ

for constant µ (i.e. uniform composition), d lnµ = 0. Putting this into our inequality gives(
1

γ
− 1

)
d lnP

dr
> − d lnT

dr

for stability. Since both things on the left are negative, the LHS is a positive quantity, also
the RHS is positive since T increases into the star. Putting these in explicitly gives∣∣∣∣d lnT

dr

∣∣∣∣ < (1− 1

γ
)

∣∣∣∣d lnP

dr

∣∣∣∣
or

d lnT

d lnP
|∗ < 1− 1

γ

to be stable. for and ideal gas 1− 1/γ = 2/5. More generally this is stated

∇ < ∇ad

where ∇ = d lnT/d lnP in the stellar profile and ∇ad = ∂ lnT/∂ lnP evaluated at constant
entropy, a local EOS property.
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Let’s check a model. For the Eddington standard model P ∝ T 4 so that

d lnT

d lnP
|Edd =

1

4

so that model is stable, no convection.
Hansen, Kawaler, & Trimble figure 5.2 for sun.

12.2 Entropy profile

Let’s redo this in a more entropy centered way.

ln ρ

lnP

star

ρ ∝ P 1/γ

move fluid element

entropy increases this way

so that model is stable
more dense than star
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The adiabat is for a particular entropy of the fluid element. What is the T -ρ relation
for an adiabat?

TdS = dE + pdV

for an adiabat

0 =
3

2
NkBdT +

N

V
kTdV

or
3

2

dT

T
= −dV

V

so then for an adiabat T ∝ V −2/3 or T ∝ ρ2/3 for a adiabat.
But now if I want to increase entropy. At fixed ρ I want to increase S. to do so must in-

crease T , thus the pressure increases at fixed ρ as S increses. So a curve to the right on the
above plot has higher entropy. So we have found that entropy decreasing inwards is stable,
and entropy increasing inward is unstable. (note that a steeper temperature gradient im-
plies a shallower density gradient, for the same pressure.)

12.3 Action of convection

Back to considering a fluid element moving from 1 to 2, a distance ∆r. so for the bubble

ρ2,bub = ρ1

(
p2
p1

)1/γ

want an idea how the bubble accelerates as it moves up. Also,

ρ2,∗ = ρ1 + ∆r
dρ

dr
|∗

density contrast between the bubble and the star,

∆ρ = ρ2,∗ − ρ2,b

which is positive for the unstable case. After some work like above,

∆ρ = ρ∆r

[
d ln ρ

dr
+
ρg

Pγ

]
where we have used dP

dr
= −ρg. The acceleration on the fluid element due to buoyancy is

a =
∆ρ

ρ
g = g∆r

[
d ln ρ

dr
+
ρg

Pγ

]
The thing on the right without the ∆r is a number set by the model that has units of
1/sec2. It is convenient to define the Brunt Vaisala frequency

N2
BV ≡ −g

[
d ln ρ

dr
+
ρg

Pγ

]
so that a = −N2

BV ∆r
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Note that if the term in [..] in the equation of motion is negative we have a simple harmonic
oscillator. Let’s consider this case first.

When the star has a stable gradient N2 > 0 then a = −∆rN2 or ẍ = −xN2 which gives
simple harmonic motion at frequency N . This is very important for stellar oscillations. This
mechanism gives gravity waves in the earths atmosphere.

So, what is N2 approximately? The two terms are comparable, so we’ll just use d ln ρ
dr
≈

1/H so then

N2 =
g

H

which since H = kT/mpg is the scale height, N2 = mpg
2/kT or

N ' g
(mp

kT

)1/2
≈ g

vth
≈ g

cs

What is N near the center,

N2 ∼ g

R
∼ GM

R3

so that in this case N ∼ 1/tdyn.

12.4 Motion and Profile in Unstable Case

Will consider in 2 steps:
1. What speeds are possible?
2. What temperature gradient is required?

What speeds are possible? assuming unstable, then the equation of motion is

ẍ = x
1

τ 2

so that x = x0e
t/τ and the velocity of the fluid element is

v =
x0
τ
et/τ

so that if moved ` = x0e
t/τ we have

v =
`

τ
velecity increases linearly with distance moved. Putting stuff back in

v = `

√
g

(
d ln ρ

dr
+
ρg

γP

)
want to write this in terms of the density contrast at position `. At position `,

∆ρ

ρ
|at` = `

(
d ln ρ

dr
+
ρg

γP

)
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identifying that in the v above,

v = (g`)1/2
(

∆ρ

ρ
|`
)1/2

Just put in ` = H = kT/mpg to find the velocity upon moving a scale height

v =

(
gkT

mpg

)1/2(
∆ρ

ρ
|`
)1/2

' cs

(
∆ρ

ρ
|`=H

)1/2

so then if you’ve moved a scale height you’ll be moving at approximately the sound
speed (if ∆ρ/ρ ∼ 1). This really results from the definition of the scale height, mov-
ing this far gives you about the thermal energy. ∆ρ/ρ = 1 is incredibly fast. Since
it is so efficient ∆ρ/ρ small is plenty to move heat out. This being small means that
the whole convective region is on an adiabat and thus is at constant entropy.
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