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9 Stars notes 2019/09/11 - Wed - polytropes, Edding-

ton model

9.1 Polytropes

Slightly better model of internal structure Another way to get to a similar endpoint
as previous finite-differencing. A bit more quantitative, and will be used to construct the
Eddington standard model.

Already shown that ideal gas pressure is dominant in most cases,

P (r) =
ρ(r)kBT (r)

µmp

If we can relate T (r) to ρ(r) somehow, then P (r) is a function of ρ(r) only. Then the
structure can be solved for self-consistently. Can see this from the following, recall we have
two equations

dP

dr
= −ρ(r)Gm(r)

r2

and

m(r) =

∫ r

0

ρ(r)4πr2dr

when P = Kρα then the structure can be solved for with a given ρc or Pc. Done by using
the polytropic EOS (the P-ρ relation) to convert P to ρ in the above equations and then
integrating both from the center. Generally needs to be done numerically, but it can be
done. The results are called Lane-Embden functions. These are called polytropes!

Ofter n is used for the index, but it is conventionally not the same as the α in P = Kρα

above, instead α = 1 + 1/n, but you should check the context.
Once the integration is performed, one is able to map (K,α) and ρc to full profiles ρ(r),

P (r) and also total mass M and radius R. This relation means that one only needs to
specify 3 parameters and that will give all the others. Also note that K can be obtained
from ρc, Pc and α if all of them are given. So it is possible to get a structure if any one of
the following combinations of three are given: (α,ρc, Pc), (α, K, Pc), (α, K, M), (α, M ,
R). Note the latter ones are the hardest to use, because one basically must find the K and
ρc that gives that M and R when integrated.

9.2 Eddington’s standard model - why stars are nearly poly-
tropes

Now we will derive a relation between P and T that allows us to use the polytropic EOS
and therefore polytropic structure.

Uses radiative transport to relate ρ to T . The flux is

F = −1

3
c

1

neσγ

d

dr
aT 4
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assuming all that matters is Thompson scattering σγ is the Thompson cross section for
e− γ scattering. But rather than writing cross sections we like to define the opacity

κ =
σ

mp

≈ cm2/gr

Then the flux is

F = −1

3

c

ρ

1

κ

d

dr
aT 4(r)

in a real star κ could be complicated, but ours here is simple.
This gives that

Lr = −4πr2
1

3

c

ρκ

d(aT 4)

dr

so then Lr is the luminosity at radius r. Can write this as the gradient of the radiation
pressure,

Lr = −4πr2
c

ρκ

d

dr
Prad

where Prad = 1
3
aT 4 now remember that for hydrostatic balance

1

ρ(r)

dP

dr
= −Gm(r)

r2

Since ρ(r)dr appears in both of these equations, we define the column by dy = −ρ(r)dr so
then our equations become

Lr = 4πr2
c

κ

d

dy
Prad

or
dPrad
dy

=
L(r)

4πr2
κ

c

and
dP

dy
=
Gm(r)

r2

So now we have two equations for stellar structure.
To eliminate radius, and since Prad is really just an alias for the temperature, we take

the ratio of these two equations.

dP

dPrad
=

4πGm(r)c

κL(r)

which is some dimensionless number. writing this a bit different:

=
4πGc

κ

M

L

[
m(r)

M

] [
L

L(r)

]
=
LEdd
L

[
m(r)

M

] [
L

L(r)

]
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the constant out front is unitless, so we identify the Eddington luminosity to be

LEdd =
4πGcM

κ
=

4πGcMmp

σTh

in units this is

LEdd = 1.2× 1038 ergs/s
M

M�
= 3.13× 104L�

M

M�

We talked about last time that for stars, generally

L = L�

(
M

M�

)3

so we see that
L

LEdd
≈ 3× 10−5

(
M

M�

)2

This is a small ratio for most stars. But at M ≥ 100M�, L/LEdd ∼ 1. (leads to mass loss)
”The trick” is to take the combination appearing here

η(r) =
m(r)

M

L

L(r)

and assume it is some number independent of r. This is the definitive assumption of the
Eddington Standard Model. So then

dP

dPrad
=
LEdd
L

η

which gives ∫ r

R

dP =
LEdd
L

η

∫ r

R

dPrad

so then

P (r) =
LEdd
L

ηPrad(r)

This relates P and T and therefore can give us a polytrope.
As an example, to see this quickly, take the gas-pressure-dominated limit, when L �

LEdd, P (r) = Pgas and then

ρ(r)kBT (r)

µmp

=
LEdd
L

η
1

3
aT 4(r)

so we have the relation we wanted ρ(r) ∝ T 3(r). Putting stuff in

P = Pg ∝ ρ(r)T (r) ∝ ρ4/3(r)

This then allows for an integration to get the total structure.
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This was for the gas pressure dominating the total pressure. We really need to allow
for Prad ∼ Ptot. Note that the ratio of Pg to Pr is a constant with radius. Now use
Pgas(r) = βPtot so that

Prad =
1− β
β

Pgas

(this is how the actual Eddington Standard Model is typically phrased) so going back and
doing the same thing as before but keeping β,

T (r) =

[
3kB
aµmp

1− β
β

]1/3
ρ1/3(r)

then

P (r) =

[(
kB
µmp

)4
3

a

1− β
β4

]1/3
ρ4/3(r)

this thing out front is constant. Now you can take this back and construct an α = 4/3
polytrope by integrating and you get

1− β
β4

= 3× 10−3µ4

(
M

M�

)2

checking some values
µ2M/M� β

1 0.997
2 0.9885
5 0.9412
10 0.8463
50 0.5

for a normal star µ = 0.6 so then can do
M/M� Pr/Pg

2.8 3× 10−3

14 6.2× 10−2

138 1
As the Pr kicks in, the luminosity starts to go like the mass rather than the mass cubed.

Massive stars asymtote to the eddington limit.
In homework 2, will compare mesa models to polytropes.
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