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6 Stars notes 2019/09/04 - Wed - Hydrostatics and

Thermodynamics of stars

6.1 Self-gravitating objects

Objects where gravity is playing the important role for the structure. Want some basic
understanding of the first two equations of stellar structure, before we get to heat transport.

First we want to justify using hydrostatic balance. What if the star was NOT in
hydrostatic balance?

ρ
d~v

dt
= −~∇P + ρ~g

(no rotation or magnetic field). Then what if P → 0? we see that

d~v

dt
= ~g

for a star,

~g = −Gm(r)

r2
~̂r

where the mass interior to r is

m(r) =

∫ r

0

ρ(r)4πr2dr

So then we want to know how long until collapse if we turn off the pressure then taking vr
pointing in

dvr
dt

=
Gm(r)

r2

Want to consider the Dynamical time also known as the free-fall time, the timescale
on which a star would change in NOT in hydrostatic balance..

Note in spherical collapse there is no ”shell crossing”, i.e. the mass interior to a point is
a good coordinate. Define vr to be the velocity at the outer shell where m(r) = m0 always.
(the mass within a shell defined by a particle position is constant) then we have

d2r

dt2
= −Gm

r2

which is the equation for collapse of a shell. Now we can integrate this equation to get r(t),
but what matters here is the characteristic timescale. Just grossly (finite-differencing):

r

t2Dyn

∼ Gm

r2
⇒ tDyn '

1√
Gm/r3

∼ 1√
Gρ

For the sun

〈ρ〉 =
M�

4πR3
�/3
' 1.4gr/cc
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and with G ∼ 10−7 in cgs units tDyn ∼ 1 hour. the orbital period at the surface of an
object is roughly the dynamical time. Kepler’s law:

ω2
k =

GM

r3

so then (
2π

Porb

)2

=
GM

r3

so modulo constants these are the same.
Since the stars have been sitting there for a long time, we always presume hydrostatic

balance.

6.2 Energetics of hydrostatic star

6.2.1 Virial theorem

hydrostatic assumption relates gravitational to thermal kinetic energy
Take

dP

dr
= −ρGm(r)

r2

multiply both side by 4πr3dr and integrate. Then RHS

RHS = −
∫
ρ(r)

4πr3drGm(r)

r2

but dm(r) = ρ4πr2dr so

= −
∫
Gm(r)dm(r)

r
= EG

but this is the gravitational binding energy:

EG = −
∫ M

0

[
Gm(r)

r

]
dm(r)

Now working on the other side

LHS =

∫ M

0

dP

dr
4πr3dr

integrating by parts

= 4πr3P |R0 − 3 · 4π
∫
P · r2dr

for a star effectively P (R) = 0 since the central pressure is so much higher than the pressure
from the ISM, and r = 0 at center,

LHS = 0− 3

∫
P (r)4πr2dr
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This looks much like the volume integral of kinetic energy, since P is a measure of the
kinetic energy.

Define

〈P 〉 =
1

V

∫
P4πr2dr

so then we have from hydrostatic balance that

〈P 〉 = −1

3

EGR

V

which is the virial theorem for the star. The total energy is

Etot = EG + EKE

we know that EG = −3V 〈P 〉 so this says that

Etot = −3V 〈P 〉+EK for any hydrostatic object

so now we need some way to relate the pressure to the kinetic energy. So the relation
between the pressure and the kinetic energy density of the the pressure-supporting particles
really sets Etot.

6.2.2 Total binding energy and particle type

Relation between pressure and KE density Take a box with particles in it which
have three degrees of freedom. These have some number density n = N/V . Imagine that
1/6 of them are each hitting each wall at the same time. So the number per second striking
the wall

r = A
n

6
v

(this doesn’t give you the 1/3 honestly, but it shows the difference between relativistic
and non-relativistic) the momentum transferred into the wall by each particle is ∆p = 2p,
where p is the momentum of a particle, so then the force on the wall is F = 2pAn

6
v so the

pressure is
F

A
= P =

1

3
pnv .

So far we haven’t put in relativistic or non-rel.

Non-relativistic Start with non-relativistic, so that p = mv and then

P =
1

3
(mv)nv =

2

3
n

1

2
mv2 =

2

3
n(eKE)

where we have used eKE for the ”kinetic” internal energy of a gas particle. i.e. the thermal
energy per particle. So the term in the virial theorem is

−3V 〈P 〉 = −3V
2

3
n(eKE) = −2NeKE = −2EKE
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So the virial theorem itself,

−3V 〈P 〉 = EG becomes − 2EKE = EG or EKE = −1

2
EG

And so for non-relativistic, the total binding energy is:

Etot = −3V 〈P 〉+EKE = −2EKE + EKE Etot = −EKE =
1

2
EG

.

Relativistic What if particles are relativistic?:
p = E/c = eKE/c and v = c

P =
1

3
pnv =

1

3

eKE

c
nc =

1

3
n(eKE) =

1

3

EKE

V
.

So if relativistic
Etot = −3V 〈P 〉+EKE = 0 (!!!)

So if a hydrostatic object is supported by relativistic particles, its binding energy is zero
and independent of things like its size and temperature. Can’t really make a stable object
that way.

To say where each occurs: relativistic particles supply the pressure in two places

1. Massive (M > 50M�) stars, supporting particles are photons.

2. Massive White dwarfs, supported by relativistic electrons, leads to the Chandrasekhar
mass.

but for now we’ll focus on the non-relativistic case.

6.3 Thermodynamics of star

In stars, we have just found that

Etot = −KKE =
1

2
EGr

so that as a star loses overall energy, the kinetic energy of the particles increases, and thus
T increases. So the heat capacity of a star is negative. To put it the other way, putting
energy into a star and causes the temperature to go down. True for self-gravitating and in
hydrostatic balance, because the thermal and gravitational energy resivoirs are coupled.

MESA exercise:
Try it! compute the total energy as the sum of the gravitational potential energy (formula
shown above) and the integral of the thermal internal energy. (you can actually get mesa
to include these in the history output file) Plot this and the central temperature vs. time
during the time between formation and hydrogen ignition in the getting started simulation.
You could also plot the luminosity and integrate it to see where all that energy goes!
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